Tris- and Pentakis-dialkyldithiocarbamates of Ruthenium, [Ru(S₂CNR₂)₃]ⁿ and $[Ru_2(S_2CNR_2)_5]^n$ (n = +1, 0, and -1): Chemical and Electrochemical Interrelations

By Alan R. Hendrickson, Janet M. Hope, and Raymond L. Martin,* Research School of Chemistry, Australian National University, P.O. Box No. 4, Canberra, Australia 2600

The electron-transfer characteristics of many ruthenium(III) dithiocarbamates have been studied in acetone at a platinum electrode. The tris complexes undergo a relatively facile, reversible, one-electron reduction step to yield the ruthenium(II) complexes $[Ru(S_2CNRR')_3]^-$ (R,R' = Me, Et, Pr^I, Bu^I, Ph, PhCH₂, C₆H₁₁; RR' = piperidinyI, 2,6-dimethylpiperidinyI, pyrrolidinyI, or morpholinyI). The corresponding one-electron oxidation step to the formally ruthenium(iv) complex $[Ru(S_2CNRR')_a]^-$ is not reversible, the degree of irreversibility being markedly dependent on the substituents R and R'. Substituent effects on the redox potentials parallel those reported previously for many first-row transition-metal dithiocarbamates. Chemical and electrolytic oxidation of [Ru(S₂CNR₂)₃] yield the dimeric ruthenium (III) cations [Ru₂(S₂CNR₂)₅] + which are obtained in two structural isomeric forms, a and β . Both series (α and β) undergo successive one-electron reductions to the corresponding [Ru₂(S₂CNR₂)₅] and [Ru₂(S₂CNR₂)₅] - complexes. The rates of isomerisations (i) and (ii) have been measured. The combined redox-

$$\beta - [Ru_2(S_2CNMe_2)_5]^{-} \longrightarrow \alpha - [Ru_2(S_2CNMe_2)_5]^{-}$$
(i)

$$\alpha - [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^+ \longrightarrow \beta - [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^+$$
(ii)

potential data and equilibrium measurements afford the relative thermodynamic stabilities of the six dimeric species. Many of the new complexes have been characterised by spectroscopic techniques including i.r., visible-u.v., and ¹H n.m.r. Paramagnetic shift reagents have been employed and, in the case of β -[Ru₂(S₂CNMe₂)₅]⁺, enantiomers have been distinguished with an optically active shift reagent.

RUTHENIUM(III) dithiocarbamates have been well characterised by X-ray structural 1-3 and 1H n.m.r. 4-6

¹ A. Domenicano, A. Vaciago, L. Zambonelli, P. L. Loader, and A. M. Venanzi, *Chem. Comm.*, 1966, 476. ² L. Pignolet, *Inorg. Chem.*, 1974, **13**, 2051. ³ (a) C. L. Raston and A. H. White, *J.C.S. Dalton*, 1975, 2405;

(b) *ibid.*, p. 2410.
⁴ L. Pignolet, R. A. Lewis, and R. H. Holm, J. Amer. Chem.

Soc., 1971, 93, 360.

L. Pignolet, D. J. Duffy, and L. Que, J. Amer. Chem. Soc., 1973, 95, 295.

studies since they were first reported by Cambi and Malatesta.7-9 Patterson and Holm 10 suggested that the ruthenium(IV) cation [Ru(S₂CNMe₂)₂]⁺ should be

⁶ D. J. Duffy and L. Pignolet, *Inorg. Chem.*, 1974, 13, 2045. ⁷ L. Cambi and L. Malatesta, *Ber.*, 1937, 70, 2067. ⁸ L. Cambi and L. Malatesta, *Rend. 1st., Lombardo Sci.* Lettre, 1938, **A181** (Chem. Abs., 1940, **34**, 3201-1). ⁹ L. Malatesta, Gazzetta, 1938, **68**, 195.

¹⁰ G. S. Patterson and R. H. Holm, Inorg. Chem., 1972, 11, 2285.

accessible synthetically. They noted that the voltammetry of $[Ru(S_2CNEt_2)_3]$ in NN-dimethylformamide (dmf) is characterised by a one-electron oxidation [+0.38 V relative to the standard calomel electrode (s.c.e.)] which differed only slightly from that observed for $[Fe(S_2CNEt_2)_3]$ (+0.42 V). Complexes Fe- $(S_2CNR_2)_3$ ⁺ have been isolated and characterised.^{11,12} Subsequently, the oxidation of $[Ru(S_2CNEt_2)_3]$ by boron trifluoride-air in dry toluene (or benzene)¹¹ was reported to yield a diamagnetic oligomer (n = 2.6), although no structural formulation was proposed.13 In fact, the dark red benzene-insoluble oligomer was shown by X-ray crystallography ¹⁴ to be [Ru₂(S₂CNEt₂)₅] [BF₄] confirming that oxidation of a ligand and not the metal atom had occurred.

Two types of bridging dithiocarbamate ligand occur in the dimeric cation and the relatively short Ru · · · Ru distance (2.74 Å) reveals the presence of a metal-metal bond. This finding is in marked contrast to that reported 15-17 for the structures of the related bimetallic cations $[Co_2(S_2CNEt_2)_5]^+$ and $[Rh_2(S_2CNMe_2)_5]^+$, which are characterised by only one type of dithiocarbamate bridge and the absence of a metal-metal bond (Co · · · Co 3.372, $Rh \cdots Rh$ 3.556 Å). Furthermore, the absolute configurations of the octahedral environment of the two cobalt (or rhodium) atoms are opposed (Δ and Λ chiralities) whereas in $[Ru_2(S_2CNEt_2)_5]$ [BF₄] they are the same. Recently, Raston and White ³ isolated, from metathesis of aqueous solutions of 'ruthenium trichloride trihydrate ' and sodium dialkyldithiocarbamate, red materials which, after recrystallisation, yielded the bimetallic solvated $[\mathrm{Ru}_2(\mathrm{S}_2\mathrm{CNPr}_2)_5]\mathrm{Cl}\cdot 2.5\mathrm{C}_6\mathrm{H}_6$ and species $[\operatorname{Ru}_2(S_2 CNPr_{2}^{i}_{2}_{5}][Ru_{2}Cl_{6}]\cdot 2CHCl_{3}\cdot (C_{6}H_{6}?)$. Both cations, unlike that of Pignolet and Mattson,14 possess the same stereochemistry as that of the $[Co_2(S_2CNEt_2)_5]^+$ archetype.16

Aspects of the chemistry of ruthenium dithiocarbamates are developed in this paper, namely the redox behaviour of $[Ru(S_2CNR_2)_3]$ and of the two bimetallic

$$\begin{bmatrix} \operatorname{Ru}(S_2 \operatorname{CNR}_2)_3 \end{bmatrix}^+ \stackrel{e^-}{\Longrightarrow} \begin{bmatrix} \operatorname{Ru}(S_2 \operatorname{CNR}_2)_3 \end{bmatrix} \stackrel{e^-}{\Longrightarrow} \\ \begin{bmatrix} \operatorname{Ru}(S_2 \operatorname{CNR}_2)_3 \end{bmatrix}^- (1)$$

isomeric forms of $[Ru_2(S_2CNR_2)_5]^+$.

$$[\operatorname{Ru}_{2}(\operatorname{S}_{2}\operatorname{CNR}_{2})_{5}]^{+} \stackrel{e^{-}}{\xleftarrow{}} [\operatorname{Ru}_{2}(\operatorname{S}_{2}\operatorname{CNR}_{2})_{5}] \stackrel{e^{-}}{\xleftarrow{}} [\operatorname{Ru}_{2}(\operatorname{S}_{2}\operatorname{CNR}_{2})_{5}]^{-} (2)$$

EXPERIMENTAL

Electronic spectra were obtained on a Cary 14 spectrometer and i.r. spectra, obtained on a Perkin-Elmer 457 instrument, were recorded in KBr discs or KBr solution cells. Qualitative ¹H n.m.r. spectra were obtained with a JEOL 100-MHz instrument, a Varian HA-100 spectrometer being used for quantitative and shift-reagent measurements.

Electrochemical.—All the measurements were made with a

¹¹ E. A. Pasek and D. K. Straub, Inorg. Chem., 1972, 11, 259. ¹² R. Chant, A. R. Hendrickson, R. L. Martin, and N. M. Rohde, Inorg. Chem., 1975, 14, 1894.
 ¹³ L. Gahan and M. J. O'Connor, J.C.S. Chem. Comm., 1974, 67.

 L. H. Pignolet and B. M. Mattson, J.C.S. Chem. Comm., 1975,
 We thank Professor Pignolet for communicating a fuller account of this work prior to publication.

three-electrode Princeton Applied Research model 170 instrument with platinum working and auxiliary electrodes. Unless otherwise noted, measurements were made on ca. 10^{-3} mol dm⁻³ depolariser in 0.1 mol dm⁻³ [NEt₄][ClO₄]-Me₂CO solutions with potentials referred to a Ag-AgCl-0.1 mol dm⁻³ LiCl-Me₂CO electrode.¹⁸ The phase-sensitive a.c. voltammograms were measured in phase with the input alternating potential. An a.c. potential (80 Hz) of 5 mV peak to peak and a scan rate of 10 mV s⁻¹ were used unless noted otherwise. Cyclic voltammograms at scan speeds greater than 200 mV s⁻¹ were displayed on a Tektronix 5031 storage oscilloscope and recorded on Polaroid film. Coulometry, electrolysis, and spectral monitoring of electrolysed solutions were carried out in vessels of our own design.19

Preparation of Complexes.—The assignment of isomers as α or β is described in the Results and Discussion section.

Tris(dimethyldithiocarbamato)ruthenium(111), 「Ru-(S₂CNMe₂)₃]. Method A. Ruthenium trichloride (Johnson, Matthey) (1 g) in water (200 cm³) was added dropwise with vigorous stirring to Na[S2CNMe2] (Eastman Kodak) (2.9 g) in water (200 cm³) at room temperature. The waterwashed precipitate was purified by column chromatography on alumina (neutral) with CH₂Cl₂ as eluant. The complex was recrystallised from CH₂Cl₂-MeOH, yield 0.5 g.

Method B. Preparation A above was repeated using water-methanol (1:2) and the product which was isolated on addition of water (500 cm³) was worked-up as described above to give $[Ru(S_2CNMe_2)_3]$ (0.2 g) as a CH_2Cl_2 solvate (Found: C, 21.7; H, 4.0; N, 7.3. C₁₀H₂₀Cl₂N₃RuS₆ requires C, 21.9; H, 3.7; N, 7.7%).

 α -Pentakis(dimethyldithiocarbamato)diruthenium(III)

Chloride, α -[Ru₂(S₂CNMe₂)₅]Cl. When a sample of [Ru- $(S_2CNMe_2)_3$ as described in A or B above was prepared, chromatographed, and handled at temperatures at or below room temperature (ca. 20 °C), pure samples of α -[Ru₂-(S₂CNMe₂)₅]Cl could be obtained by eluting (MeOH) the product after removal of $[Ru(S_2CNMe_2)_3]$. The diruthenium complex was isolated from the concentrated MeOH solution by addition of OEt_2 , yields from both preparations ca. 0.6 g (Found: C, 20.9; H, 3.7; Cl, 4.1; N, 8.1. C₁₅H₃₀ClN₅Ru₂S₁₀ requires C, 21.5; H, 3.6; Cl, 4.2; N, 8.4%).

 α -Pentakis(dimethyldithiocarbamato)diruthenium(III) tetrafluoroborate, α -[Ru₂(S₂CNMe₂)₅][BF₄]. Sodium tetrafluoroborate (0.02 g) was added to $\alpha\text{-}[\mathrm{Ru}_2(\mathrm{S_2CNMe_2})_5]\mathrm{Cl}$ (0.2 g) in MeOH (15 cm³) and the solution was stirred for 10 min. The precipitated red crystalline complex was recrystallised from acetone-light petroleum (b.p. 80-100 °C) as an acetone solvate (Found: C, 22.8; H, 3.9; N, 7.5. $C_{18}H_{36}BF_4N_5ORu_2S_{10}\ requires\ C,\ 22.8;\ H,\ 3.8;\ N,\ 7.4\%).$ α -Pentakis(dimethyldithiocarbamato)diruthenium(III)

hexafluorophosphate, $\alpha - [\mathrm{Ru}_2(\mathrm{S}_2\mathrm{CNMe}_2)_5][\mathrm{PF}_6].$ Sodium hexafluorophosphate (0.09 g) in MeOH (3 cm³) was added with stirring to a solution of α -[Ru₂(S₂CNMe₂)₅]Cl (0.4 g) in MeOH (30 cm³). The product, which formed immediately, was collected and recrystallised from CH₂Cl₂-MeOH (Found : C, 19.0; H, 3.7; N, 7.2. C₁₅H₃₀F₆N₅PRu₂S₁₀ requires C, 19.0; H, 3.2; N, 7.4%).

¹⁵ A. R. Hendrickson and R. L. Martin, J.C.S. Chem. Comm., 1974, 873.

¹⁶ A. R. Hendrickson, R. L. Martin, and D. Taylor, J.C.S. Dalton, 1975, 2182.

- 17 A. R. Hendrickson, R. L. Martin, and D. Taylor, Austral. J. Chem., 1976, 29, 269.
- ¹⁸ A. M. Bond, A. R. Hendrickson, and R. L. Martin, J. Electrochem. Soc., 1972, **119**, 1325.

¹⁹ A. R. Hendrickson and R. L. Martin, unpublished work.

Conversion of isomers. (i) α -[Ru₂(S₂CNMe₂)₅]Cl into β -[Ru₂(S₂CNMe₂)₅]Cl. The complex α -[Ru₂(S₂CNMe₂)₅]Cl was heated under reflux in a minimum volume of MeOH for 8 h. On cooling, crystals of β -[Ru₂(S₂CNMe₂)₅]Cl separated (Found: C, 20.7; H, 4.1; Cl, 3.9; N, 7.9. C₁₅H₃₀ClN₅-Ru₂S₁₀ requires C, 21.5; H, 3.6; Cl, 4.2; N, 8.4%).

(ii) α -[Ru₂(S₂CNMe₂)₅]X into β -[Ru₂(S₂CNMe₂)₅]X (X = BF₄ or PF₆). These conversions were undertaken in CDCl₃ at *ca.* 60 °C and the reaction was monitored by ¹H n.m.r. spectra. The β -[Ru₂(S₂CNMe₂)₅]⁺ salts were not isolated from these reactions.

β -Pentakis(dimethyldithiocarbamato)diruthenium(III)

tetrafluoroborate, β -[Ru₂(S₂CNMe₂)₅][BF₄]. The salt Na[BF₄] (0.03 g) in a minimum volume of MeOH was added to β -[Ru₂(S₂CNMe₂)₅]Cl (0.2 g) in MeOH (50 cm³) and the mixture shaken for a few minutes. On evaporation to dryness *in* vacuo the product was extracted into CH₂Cl₂. The [BF₄]⁻ salt of [Ru₂(S₂CNMe₂)₅]⁺ was eluted from an alumina column with acetone. The complex may be recrystallised from CH₂Cl₂-OEt₂ or CH₂Cl₂-MeOH (Found: C, 20.9; H, 3.9; N, 7.9. C₁₅H₃₀BF₄N₅Ru₂S₁₀ requires C, 20.2; H, 3.4; N, 7.9%).

β -Pentakis(dimethyldithiocarbamato)diruthenium(III)

tetrafluoroborate, β -[Ru₂(S₂CNMe₂)₅][BF₄]. Diethyl etherboron trifluoride (2 cm³ of 45% solution in OEt₂) was added to [Ru(S₂CNMe₂)₃] (0.46 g) in warm benzene (50 cm)³ with stirring, whereupon a red oil formed which yielded dark red crystals of the complex from acetone on addition of OEt₂ and cooling (Found: C, 19.9; H, 3.4; B, 1.2; F, 8.7; N, 7.6. C₁₅H₃₀BF₄N₅Ru₂S₁₀ requires C, 20.2; H, 3.4; B, 1.2; F, 8.5; N, 7.9%).

Pentakis(dimethyldithiocarbamato)diruthenium, $[Ru_2(S_2-CNMe_2)_5]$. All manipulations were made under an inert atmosphere (N_2) and all solutions were degassed.

(a) Electrolytic reduction of β -[Ru₂(S₂CNMe₂)₅][BF₄]. The salt β -[Ru₂(S₂CNMe₂)₅][BF₄] (135 mg) was dissolved in acetone and 0.1 mol dm⁻³ [NEt₄][ClO₄] (ca. 20 cm³) and reduced at -0.50 V versus Ag-AgCl at a platinum electrode. The neutral product which precipitated was collected, washed quickly with degassed acetone, and dried *in vacuo*.

(b) Na[BH₄] Reduction of β -[Ru₂(S₂CNMe₂)₅]Cl. The salt β -[Ru₂(S₂CNMe₂)₅]Cl (0.15 g) was dissolved in degassed MeOH (20 cm³). Sodium tetrahydridoborate (0.007 g) in MeOH (1 cm³) was added dropwise with stirring under nitrogen. The dark precipitated product was collected and dried *in vacuo* (Found: C, 22.5; H, 4.1; N, 8.2. C₁₅H₃₀N₅Ru₂S₁₀ requires C, 22.4; H, 3.8; N, 8.7%).

Electrolytic oxidation of $[\operatorname{Ru}(S_2\operatorname{CNMe}_2)_3]$. The complex (0.5 g) in 0.1 mol dm⁻³ $[\operatorname{NEt}_4][\operatorname{BF}_4]-\operatorname{Me}_2\operatorname{CO}$ (20 cm³) was electrochemically oxidised at + 0.8 V versus Ag-AgCl. The resulting solution was evaporated to dryness at room temperature (ca. 20 °C) and the $[\operatorname{NEt}_4][\operatorname{BF}_4]$ was removed by repeated washing with water. The remaining solid was extracted into $\operatorname{CH}_2\operatorname{Cl}_2$ and the solution was dried over magnesium sulphate. The product was then purified by column chromatography on alumina. Elution with $\operatorname{CH}_2\operatorname{Cl}_2$ removed $[\operatorname{Ru}(S_2\operatorname{CNMe}_2)_3]$. Subsequent elution with acetone removed α- $[\operatorname{Ru}_2(S_2\operatorname{CNMe}_2)_5][\operatorname{BF}_4]$. Products were identified by comparing their redox potentials and ¹H n.m.r. spectrum { $[\operatorname{Ru}_2(S_2\operatorname{CNMe}_2)_5][\operatorname{BF}_4]$ only} with those of authentic samples.

 β -Pentakis(diethyldithiocarbamato)diruthenium(III) tetrafluoroborate, β -[Ru₂(S₂CNEt₂)₅][BF₄]. This complex was prepared in many ways and only one method will be described in detail. Method A. The complex $[Ru(S_2CNEt_2)_3]$ (0.25 g) in benzene (25 cm³) was cooled in ice until some benzene solidified, whence BF₃ gas was bubbled through the solution for 30 s. After a few minutes the solution was decanted from the red oil which formed. Recrystallisation from acetone by addition of OEt₂ and cooling afforded dark red crystals of the complex (Found: C, 29.0; H, 5.2; B, 1.1; F, 7.2; N, 6.6. $C_{25}H_{50}BF_4N_5Ru_2S_{10}$ requires C, 29.1; H, 4.9; B, 1.1; F, 7.4; N, 6.8%).

The same complex, as determined by ¹H n.m.r. spectra, was formed in the following reactions: (B), reaction (A) at ca. 30 °C; (C), reaction (A) with BF₃ (g) replaced with OEt₂·BF₃ at room temperature; (D), reaction (A) at the reflux temperature of benzene; and (E), reaction (A) with O₂ bubbled through the solution for 2 min prior to and after addition of BF₃ (g).

β-Pentakis(diethyldithiocarbamato)diruthenium(III) chloride β-[Ru₂(S₂CNEt₂)₅]Cl. The products from the 1:3 mixture of RuCl₃ and [S₂CNEt₂]⁻ were separated by column chromatography on SiO₂. After elution with CH₂Cl₂ to remove [Ru(S₂CNEt₂)₃], the diruthenium complex was eluted with EtOH and was recrystallised from C₆H₆-CH₂Cl₂-OEt₂ as red crystals (Found: C, 31.2; H, 5.1; Cl, 3.3; N, 8.8. C₂₅H₅₀ClN₅Ru₂S₁₀ requires C, 30.7; H, 5.1; Cl, 3.6; N, 7.2%).

 $\begin{array}{l} Pentakis(dibenzyldithiocarbamato)diruthenium(III) chloride,\\ [Ru_{2}{S_{2}CN(CH_{2}Ph)_{2}}_{5}Cl. The complex [Ru_{2}{S_{2}CN(CH_{2}-Ph)_{2}}_{5}Cl was isolated from the mixture of products obtained in reaction of RuCl_{3} and [S_{2}CN(CH_{2}Ph)_{2}]^{-}, by column chromatography on SiO_{2}. Elution with acetone-benzene (1:1) removed [Ru{S_{2}CN(CH_{2}Ph)_{2}}_{3}]. Elution with EtOH removed the diruthenium fraction which was recrystallised from CH_{2}Cl_{2}-C_{6}H_{6} (Found: C, 56.0; H, 4.7; Cl, 2.1; N, 4.3. C_{75}H_{70}ClN_{5}Ru_{2}S_{10}$ requires C, 56.3; H, 4.4; Cl, 2.2; N, 4.4%).

RESULTS AND DISCUSSION

Reduction of $[Ru(S_2CNR_2)_3]$.—Voltammetric reduction data for the series of $[Ru(S_2CNR_2)_3]$ complexes are provided in Table 1. The process has been characterised as (3) for R = Me and appears to be appropriate for all the

$$[\operatorname{Ru}(S_2 \operatorname{CNR}_2)_3] + e^- \rightleftharpoons [\operatorname{Ru}(S_2 \operatorname{CNR}_2)_3]^- \quad (3)$$

other 11 substituents examined. For $[\operatorname{Ru}(\operatorname{S_2CNMe_2})_3]$, exhaustive electrolysis produced an orange-red solution of $[\operatorname{Ru}(\operatorname{S_2CNMe_2})_3]^-$ and afforded an *n* value of 1.0. This complex anion undergoes reversible oxidation (by cyclic voltammetry) at an a.c. E_p value coincident with the reduction potential of $[\operatorname{Ru}(\operatorname{S_2CNMe_2})_3]$. The ion $[\operatorname{Ru}(\operatorname{S_2CNMe_2})_3]^-$, being analogous to the $[\operatorname{Fe}(\operatorname{S_2CNR_2})_3]^$ species reported recently,^{12,20} reacted rapidly with atmospheric oxygen, reverting to $[\operatorname{Ru}(\operatorname{S_2CNMe_2})_3]$. Spectral monitoring of the electrolytic reduction of $[\operatorname{Ru-}(\operatorname{S_2CNMe_2})_3]$ in $\operatorname{CH_2Cl_2}$ saturated with $[\operatorname{NEt_4}][\operatorname{Clo_4}]$ shows the growth of the spectrum of $[\operatorname{Ru}(\operatorname{S_2CNMe_2})_3]^-$ (Table 2) with well defined isosbestic points at 557 and 413 nm.

Oxidation of $[Ru(S_2CNR_2)_3]$.—The electrochemical oxidation of $[Ru(S_2CNR_2)_3]$ species is generally not reversible by cyclic voltammetry at 200 mV s⁻¹ (Table 3). However, there is a marked substituent ²⁰ J. L. K. F. de Vries, J. M. Trooster, and E. de Boer, *Inorg. Chem.*, 1973, **12**, 2730.

2035

		Parameters	for the red	$uction of [ICu(S_2 C)]$	$[NKK)_3]$			
		A.c. voltammetry			Cyclic voltammetry			
Complex		$\overline{E_{\mathbf{p}}}$	$\Delta E^{\frac{1}{2}}$	in/c		ΔE_n^{a}	$i_n^{f/cv^{\frac{1}{2}}}$ (av.) b	
R	R′	\overline{V}	$\overline{\mathrm{mV}}$	mA dm ³ mol ⁻¹	$i_{\rm p}{}^{f}/i_{\rm p}{}^{r}a$	mV	mA s ¹ dm ³ mol ⁻¹ mV ⁻¹	
Pr ⁱ	\Pr^i	-0.726	93	48	0.9	66	6.2	
2,6-Dimethylpiperidinyl		-0.675	с	С	с	С	С	
Bu ⁱ	Bu ⁱ	-0.686	93	48	0.9	63	6.2	
Piperidiny	1	-0.635	93	44	0.9	62	5.6	
Et	Et	-0.656	95	52	0.9	63	6.2	
Me	Me	-0.611	94	51	0.9	60	6.1	
Et	\mathbf{Ph}	-0.559	98	37	0.9	65	5.4	
Me	\mathbf{Ph}	-0.512	94	33	0.9	65	4.3	
Pyrrolidin [.]	vl	-0.640	95	36	1.0	64	4.6	
Morpholin	Vl d	-0.519	100	28	1.3	65	5.4	
PhCH ₂	$PhCH_2$	-0.481	94	45	0.9	63	5.4	
C ₆ H ₁₁	C_6H_{11}	-0.721	93	с	с	63	с	
				• • • • •		•		

TABLE 1 Demonstrate for the reduction of [Der/C (NIDD/)]

By normal pulse voltammetry the reduction processes showed a reduction potential in good agreement with the $E_{\rm p}$ results from a.c. voltammetry. $E^{\ddagger} - E^{\ddagger}$ Values all fell in the range 53-55 mV and the limiting-current values ranged from 111 to 183 mA dm³ mol⁻¹.

^a Scan rate, 100 mV s⁻¹. ^b Average value for v = 20, 50, 100, and 200 mV s⁻¹. ^c Too insoluble for reliable data. ^d Solvate having 2.5 CHCl₃.

TABLE 2

Electronic spectra of some ruthenium dithiocarbamates

Complex		Solvent				
$[\operatorname{Ru}(S_2CNMe_2)_3] \\ [\operatorname{Ru}(S_2CNMe_2)_3]^-$	<u> </u>	558 (3.18)	464 (3.38) 468 (3.86)	399 (sh) 370 (3.55)	$\begin{array}{c} 362 \ (3.92) \\ 350 \ (3.57) \end{array}$	CH_2Cl_2 sat. with [NEt_][CIO_4]
$ \alpha - [Ru_2(S_2CNMe_2)_5]^+ \beta - [Ru_2(S_2CNMe_2)_5]^+ $	ca. 1 000 (2.1) ^b 945 (2.26) ^b	553 (3.08)	$\begin{array}{c} {\bf 448} \\ {\bf (3.66)} \\ {\bf 465} \\ {\bf (3.53)} \end{array}$	400 (3.83)	$\begin{array}{c} 330 \\ 327 \\ (4.53) \end{array}$	Me ₂ CO Me ₂ CO
$ \begin{array}{l} \alpha \ - \left[\mathrm{Ru}_{2} (\mathrm{S}_{2} \mathrm{CNMe}_{2})_{5} \right]^{c} \\ \beta \ - \left[\mathrm{Ru}_{2} (\mathrm{S}_{2} \mathrm{CNMe}_{2})_{5} \right]^{c, d} \end{array} $	654	577, 510	446	× ,	357 ` 361	$CH_{2}Cl_{2} \text{ sat.} $ with [NBu ₄][ClO ₄]

^{*a*} Values of log ε are given in parentheses. ^{*b*} Solvent CH₂Cl₂. ^{*c*} Peak positions of electrolytically reduced solutions of α - and β -[Ru₂(S₂CNMe₂)₅]⁺. ^{*d*} No strong peaks ($\varepsilon > 100 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) in the 700–2000 nm region.

TABLE 3

	P	arameters for t	he oxidatio	n of [Ru(S ₂ CNRF	2′)3]		
			A.c. voltam	Cyclic voltammetry ^a			
Complex		$\overline{E_{\mathbf{p}}}$	$\Delta E^{\frac{1}{2}}$	$i_{\rm p}/c$	$\Delta E_{\rm p} b$	ip f/cvt (av.) °	
' R	R′	V	$\overline{\mathrm{mV}}$	mA dm ³ mol ⁻¹	mV	mA sł dm³ mol-1 mv-ł	
Pri	Pri	0.476	110	13	113	6.2	
2.6-Dimethylpiperidinyl		0.510	d	d	d	d	
Bu ⁱ	Ê Bu ⁱ	0.539	102	14	105	6.4	
Piperidinyl		0.558	104	13	108	5.6	
Et	Et	0.565	98	21	118	6.9	
Me	Me	0.586	101	18	125	6.5	
Et	\mathbf{Ph}	0.611	110	18	90	4.9	
\mathbf{Me}	\mathbf{Ph}	0.614	108	13	118	4.1	
Pyrrolidinyl		0.589	106	13	99	4.7	
Morpholin	nyl °	0.644	100	12	95	3.6	
PhCH ₂	PhCH ₂	0.666	106	10	119	5.4	
C ₆ H ₁₁	$C_{6}H_{11}$	0.475	98	d	100	d	

By normal pulse voltammetry the oxidation potentials (E^{\dagger}) were in good agreement with the E_{p} results from a.c. voltammetry. $E^{\frac{1}{2}} - E^{\frac{1}{2}}$ Values fell in the range 45–65 mV and the limiting current values ranged from 91 to 156 mA dm³ mol⁻¹.

^a The oxidation processes are irreversible with i_p being only a fraction of i_p at a scan rate of 100 mV s⁻¹. ^b Scan rate 100 mV s⁻¹. ^c Average value for $v = 20, 50, 100, \text{ and } 200 \text{ mV s}^{-1}$. ^d Too insoluble for reliable data. ^e Solvate having 2.5 CHCl_a.

Other substituents examined showed intermediate behaviour. The data for [Ru(S₂CNMePh)₂] suggest that the electrode process is (4) with the formally ruthen-

$$[\operatorname{Ru}(S_2 \operatorname{CNR}_2)_3] \rightleftharpoons [\operatorname{Ru}(S_2 \operatorname{CNR}_2)_3]^+ + e^- \quad (4)$$

 $complex [Ru_2(S_2CNMe_2)_5]^+$ were isolated although neither species was present originally in the oxidised solution. For both oxidation and reduction, the effect of substit-

ium(IV) species exhibiting various degrees of instability

uents on the redox potential is virtually identical to that

this solution was worked-up by chromatography (see

Experimental section) $[Ru(S_2CNMe_2)_3]$ and a diruthenium

described for many first-row transition-metal complexes,^{12,21-23} with the dibenzyl-substituted complexes being the most difficult to oxidise and the α -branched substituents di-isopropyl and dicyclohexyl providing the complexes which are the easiest to oxidise. The reverse order holds for reduction, with the difference between the oxidation and reduction potentials for any substituent being approximately constant at *ca*. **1.19** V.

Diruthenium Isomers of the Type $[Ru_2(S_2CNR_2)_5]^+$.— The diruthenium species $[Ru_2(S_2CNMe_2)_5]^+$ generated by the electrochemical oxidation of $[Ru(S_2CNMe_2)_3]$ solutions can also be synthesised by chemical methods. This dimer was obtained when solutions of $RuCl_3$ and $[S_2CNMe_2]^-$ were mixed and is readily separated from $[Ru(S_2CNMe_2)_3]$ by chromatography. Metathetical reaction of this chloride salt with $Na[BF_4]$ or $Na[PF_6]$ in $[BF_4]$, *i.e.* as in (I). The ion α - $[Ru_2(S_2CNMe_2)_5]^+$ is diamagnetic (¹H n.m.r. evidence) and possesses a Ru-Ru bond (Ru · · · Ru 2.787 Å), an important feature not

exhibited by the low-spin $d^6 \propto$ complexes of Co^{III}

or Rh^{III}. The structure of $[Ru_2(S_2CNMe_2)_5][BF_4]$ represents the third structural determination of this class of ruthenium(III) compound,³⁶ although this is the first time that many of the physicochemical properties of the

 $\nu(C \cdots N)$ Infrared

TABLE 4

Selected spectroscopic data for ruthenium dithiocarbamates

	Solvent for n.m.r.		absorptions (cm ⁻¹)		
Complex		δ "/p.p.m.	KBr disc	CH ₂ Cl ₂ solution	
α-[Ru ₂ (S ₂ CNMe ₂) ₅][BF ₄]	CD,Cl,	2.91, 3.16, 3.45, 3.49, 3.54	1 535 %		
β -[Ru ₂ (S ₂ CNMe ₂) ₅]]BF ₄]	$CD_{2}Cl_{2}$	3.11, 3.20, 3.49, 3.52, 3.55	1 540 ^b		
α -[Ru ₂ (S ₂ CNMe ₂) ₅]Cl	$CD_{2}Cl_{2}$	2.92, 3.16, 3.43, 3.47, 3.54	1 530	1 540	
β -[Ru ₂ (S ₂ CNMe ₂) ₅]Cl	$CD_{2}Cl_{2}$	3.14, 3.19, 3.52(2), 3.55	1 540	1.542	
α -[Ru ₂ (S ₂ CNMe ₂) ₅][PF ₆]	CD_2Cl_2	2.91, 3.16, 3.45, 3.49, 3.54	ء 1 542 ف		
β -[Ru ₂ (S ₂ CNMe ₂) ₅][PF ₆]	CD_2Cl_2	3.06, 3.16, 3.44, 3.48, 3.51			
α -[Ru ₂ (S ₂ CNMe ₂) ₅]Cl	CDCl ₃	3.05, 3.24, 3.53, 3.56, 3.68	$1 \ 530$		
β -[Ru ₂ (S ₂ CNMe ₂) ₅]Cl	CDCl ₃	3.22(2), 3.56, 3.59, 3.595	$1\ 540$		
$[Ru_2(S_2CNMe_2)_5]$	-		1 520	1525	
$[Ru(S_2CNMe_2)_3]$			$1\ 519$	1523	
β -[Ru ₂ (S ₂ CNEt ₂) ₅][BF ₄]	CDCl ₃	CH ₃ : 1.07, 1.42 CH ₂ : 3.58, 3.94 ^d	$1 \ 510$		
			1 527 (sh	n)	
β -[Ru ₂ (S ₂ CNEt ₂) ₅]Cl	CDCl ₃	CH ₃ : 1.07, 1.42 CH ₂ : 3.61, 3.95	1513		
[Ru(S _o CNEt _o) _o]	-	_	1 490		

^a Chemical shift relative to SiMe₄ ($\delta = 0$ p.p.m.); integrated peak areas are unity unless noted in parentheses. ^b Absorptions due to [BF₄]⁻ at 1 060br, 529, and 539 cm⁻¹. ^c Absorptions due to [PF₆]⁻ at 845 and 568 cm⁻¹. ^d Resonances appeared as complex multiplets.

methanol afforded the corresponding $[BF_4]^-$ or $[PF_6]^-$ salt. Hydrogen-1 n.m.r. spectra (see later) confirm that the product of electrochemical oxidation and the

chemically prepared species are identical. A singlecrystal X-ray study of α -[Ru₂(S₂CNMe)₅][PF₆] reveals ²⁴ that this species has the same basic structure as described earlier ^{16,17} for the cobalt(III) and rhodium(III) bimetallic complexes [Co₂(S₂CNEt₂)₅][BF₄] and [Rh₂(S₂CNMe₂)₅]-

* Note added at proof: A detailed description of the crystal structure of β -[Ru₂(S₂CNEt₂)₅][BF₄] has now appeared (B. M. Mattson, J. R. Heiman, and L. H. Pignolet, *Inorg. Chem.*, 1976, 15, 564). Some electrochemical data are reported for [Ru-(S₂CNR₂)₃] and the β forms (presumably?) of [Ru₂(S₂CNR₂)₅]-[BF₄].

complex have been described. The complete X-ray structure ²⁴ of the second isomer (β) has also been completed in these laboratories and allows the definite assignment of this isomer. A diethyl derivative has also been characterised by X-ray crystallography as the β isomer.^{14,*}

The ion α -[Ru₂(S₂CNMe₂)₅]⁺ is converted into β -[Ru₂-(S₂CNMe₂)₅]⁺ on heating in CHCl₃ solution (Cl⁻, [BF₄]⁻, or [PF₆]⁻ salts). This interconversion was monitored qualitatively by ¹H n.m.r. spectroscopy and quantitatively by spectrophotometric means on [Ru₂(S₂CNMe₂)₅]Cl. Monitoring at 450 nm, the α isomer was readily converted into the β isomer at 60 °C in CHCl₃ with a first-order rate constant, k, of ca. 1 \times 10⁻⁴ s⁻¹.

The ¹H n.m.r. properties of the complexes are of particular interest (Table 4). Both isomers showed five methyl singlets which are derived from the non-rotation

²¹ R. Chant, A. R. Hendrickson, R. L. Martin, and N. M. Rohde, Austral. J. Chem., 1973, 26, 2533.
 ²² A. R. Hendrickson, R. L. Martin, and N. M. Rohde, Inorg.

²² A. R. Hendrickson, R. L. Martin, and N. M. Rohde, *Inorg. Chem.*, 1974, **13**, 1933.

²³ A. R. Hendrickson, R. L. Martin, and N. M. Rohde, *Inorg. Chem.*, 1975, 14, 2980.

²⁴ D. Taylor, unpublished work.

about the $C \cdots N$ bond and the resulting diastereotopic nature of these groups. The chemical-shift values of these resonances are particularly dependent on the solvent and the counter anion. Interestingly, heating of β - $[Ru_2(S_2CNMe_2)_5][BF_4]$ in $(CD_3)_2SO$ to 120 °C did not cause the general five-line spectrum to coalesce, although two resonances did overlap, presumably due to a fortuitous temperature dependence of their chemical-shift values, suggesting that the $C \cdots N$ bond is quite resistant to rotation.

With both isomers, $[Eu(fmod)_3]$ (fmod = 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate) induced the shifts illustrated in Figure 1 in the ¹H n.m.r. spectra. The association equilibrium between the complexes of

requires that the complex in solution is an equimolar mixture of the diruthenium complexes, each pair being of opposite chirality. The X-ray crystallographic results also show that the crystal contains equal numbers of dimers of opposite chirality,²⁴ *i.e.* $\Delta\Delta$ and $\Lambda\Lambda$.

Although the α -[Ru₂(S₂CNMe₂)₅]⁺ dimer contains two ruthenium(III) centres of opposite chirality, the crystals consist of equal numbers of dimeric cations with the combinations of $\Delta\Lambda$ and $\Lambda\Delta$ (X-ray crystallography).²⁴ However, on interaction with OPTISHIFT, no splitting of peaks was observed (Figure 1) suggesting that the α complexes are not sufficiently sensitive to the chiral environment or that the ¹H n.m.r. shifts are accidentally coincident for these species.

Amount of shift reagent added / mg

FIGURE 1 Chemical shifts of CH₃ resonances of $(a) \alpha$ - and $(b) \beta$ -[Ru₂(S₂CNMe₂)₅][BF₄] in CD₂Cl₂ on addition of the shift reagents (i) [Eu(fmod)₃] and (ii) OPTISHIFT. Horizontal bars on (i) do not represent additional additions but refer to the 30-mg addition solution which was allowed to progress further toward equilibrium

Ru^{III} and Eu^{III} was rather slowly established, especially for β -[Ru₂(S₂CNMe₂)₅]⁺ which required many hours to equilibrate. Equilibrium was not achieved for the data shown. This fact presumably accounts for the nonlinear dependence of chemical shift on the concentration of [Eu(fmod)₃]. As no splitting of the five-line spectrum in the presence of [Eu(fmod)₃] was observed, for either the α or β isomer, it is reasonable to assume that lanthanoid attachment occurs at the S groups along the C₂ axis of the dimers. The methyl groups may be assigned assuming that those groups closest to the paramagnetic Eu^{III} are shifted most.²⁵

Addition of the optically active shift reagent OPTI-SHIFT, tris[3-(heptafluoropropylhydroxymethylene)-Dcamphorato]europium(III), to β -[Ru₂(S₂CNMe₂)₅]⁺ resulted in the same overall trends in shifting the resonances as observed with [Eu(fmod)₃] although the two peaks most sensitive to shift reagent were each split into two peaks of equal area (Figure 1). Both ruthenium(III) centres are of the same chirality and hence the observed splitting Redox Properties of $[Ru_2(S_2CNMe_2)_5]^+$.—Both the diruthenium(III) species are electroactive and behave similarly with the added feature that the two ruthenium(III) ions comprising the dimer are reduced at different potentials (Table 5). Hence following the first reduction (5) the resulting complex is formally a mixed-valence

$$[\operatorname{Ru}_2(S_2\operatorname{CNMe}_2)_5]^+ + e^- \rightleftharpoons [\operatorname{Ru}_2(S_2\operatorname{CNMe}_2)_5] \quad (5)$$

complex of Ru^{II} and Ru^{III}. Interestingly, α -[Ru₂-(S₂CNMe₂)₅]⁺ is slightly easier (by 35 mV) to reduce than β -[Ru₂(S₂CNMe₂)₅]⁺, a trend which becomes more pronounced for the second reduction step (6) where the reduction potentials for the two isomers differ by 105 mV.

$$[\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5] + e^- \rightleftharpoons [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^- \quad (6)$$

Furthermore, the reduction of β -[Ru₂(S₂CNMe₂)₅] to the anion results in a rapid conversion of this isomer (*i.e.* β -[Ru₂(S₂CNMe₂)₅]⁻) into the α anion. The reduction product of α -[Ru₂(S₂CNMe₂)₅] does not isomerise. These ²⁵ J. Reuben, *Progr. N.M.R. Spectroscopy*, 1973, 9, 1. factors are illustrated by the cyclic voltammograms in Figure 2. When this information is coupled with the fact (see earlier) that the more stable cationic isomer is obtained from the electrolytic reduction of separate solutions of α - and β -[Ru₂(S₂CNMe₂)₅]⁺ were allowed to equilibrate and the concentration of each isomeric form

	Redox prop	perties of di	iruthenium comp	lexes		
	A.c. voltammetry ^b			Cyclic voltammetry °		
	E_{p}	ΔE^{\dagger}	ip/c		$\Delta E_{\rm P}$	ip/cvł
Couple ($[BF_4]$ - salts) ^a	V	\overline{mV}	mA dm ³ mol ⁻¹	$i_{\mathbf{p}}{}^{f}/i_{\mathbf{p}}{}^{r}$	mV	mA s ¹ dm ³ mol ⁻¹ mV ⁻¹
$x - [Ru_2(S_2CNMe_2)_5]^{+/0} d$	-0.273	101	80	0.9	76	5.3
$3-[Ru_2(S_2CNMe_2)_5]^{+/0} d$	-0.308	99	80	1.0	71	6.0
$x - [Ru_2(S_2CNMe_2)_5]^{0/-1}$	-0.721	97	73	е	68	
$3-[Ru_2(S_2CNMe_2)_5]^{0/-1}$	-0.826	97	59	е	76	
$3-[Ru_2(S_2CNMe_2)_5]^{+/0}$	-0.350	97	68	0.9	72	5.2
$3-[Ru_2(S_2CNEt_2)_5]^{0/-1}$	-0.937	90	50	e	72	
$x - [Ru_2(S_2CNEt_2)_5]^{0/-f,g}$	-0.818					
$3-[Ru_{2}{S_{2}CN(CH_{2}Ph)_{2}}_{5}]^{+/0}$	-0.175	122	53	1.0	86	4.3
$B-[Ru_{2}{S_{2}CN(CH_{2}Ph)_{2}}_{5}]^{0/-f}$	-0.756	h	h	h	h	
$x - [Ru_2 \{S_2 CN (CH_2 Ph)_2\}_5]^{0/-f,g}$	-0.665					

e

TABLE 5

^a The superscript +/0 denotes the couple between positively charged and neutral species. ^b Peak to peak a.c. potential, 10 mV. ^c All data at scan rate of 200 mV s⁻¹. ^d Exhibited an irreversible oxidation at +1.27 V. ^e The ratio is scan-rate and temperature dependent (see text). ^f Assigned by analogy with the methyl derivatives. ^g Generated at electrode by isomerisation of β -[Ru₂-(S₂CNR₂)₅]⁻. ^h Conversion of the β to the α isomer was too rapid to afford meaningful data.

Potential (in V) versus Ag-AgCl

FIGURE 2 (a) Cyclic voltammogram of β -[Ru₂(S₂CNMe₂)₅][BF₄] in acetone (0.1 mol dm⁻³ [NEt₄][ClO₄]). Zero current marked at the commencement of the voltammogram (scan rate 200 mV s⁻¹). (b) Cyclic a.c. voltammogram [solution as in (a)]: (----), cathodic scan; (-----), anodic scan obtained by holding at cathodic limit for *ca*. 10 s. Scan rate 100 mV s⁻¹. In both (a) and (b) the second reduction process displays the $\beta^- \longrightarrow \alpha^-$ isomerisation of the anion. (c) Effect of scan rate on the $\beta^- \longrightarrow \alpha^-$ isomerisation of [Ru₂(S₂CNMe₂)₅]⁻. Complex added to acetone! (0.1 mol dm⁻³ [NEt₄][ClO₄]) solution as β -[Ru₂(S₂CNMe₂)₅]Cl. Some recorder distortion was introduced at the scan rate of 500 mV s⁻¹. Redox processes centred at *ca*. -0.75 V

the β form, the relative orders of stability can be determined. The equilibrium position for α -[Ru₂(S₂CNMe₂)₅] and β -[Ru₂(S₂CNMe₂)₅] has been determined in CH₂Cl₂ solution saturated with [NEt₄][ClO₄] at 20 °C. Solutions

was monitored by a.c. voltammetry of the $[Ru_2(S_2 CNMe_{2}_{5}$]-[$Ru_{2}(S_{2}CNMe_{2})_{5}$]⁻ couples. Ratios of a.c. peak currents at equilibrium suggested $K(\beta^0/\alpha^0) = [\beta - Ru_2 (S_2CNMe_2)_5]/[\alpha-Ru_2(S_2CNMe_2)_5] = 5.6$. From the additional redox data, the expressions (7) and (8) can be written.

$$K(\beta^{+}/\alpha^{+}) = K(\beta^{0}/\alpha^{0}) \exp\left\{\frac{n F}{RT} \left[E(\alpha^{0/+}) - E(\beta^{0/+})\right]\right\} = 22 \quad (7)$$

$$K(\beta^{0}/\alpha^{0}) \exp\left\{\frac{n F}{RT} \left[E(\beta^{0/-}) - E(\alpha^{0/-})\right]\right\} = 0.09 \quad (8)$$

The stability order of the two isomers, as a function of ruthenium oxidation state, is dependent on the electronic and steric requirements of the d^5 ruthenium(II) and d^6 ruthenium(II) ions. The proximity of the ruthenium(III) ions in the $t_2^{5-}t_2^{5}$ cation (2.787 Å) favours the unique bridging-ligand structure. The absence of Ru-Ru bonding in the $t_2^{6-}t_2^{6}$ anion is associated with a Ru-Ru distance which is too large to favour this type of bridging ligand $\{e.g.$ the Rh-Rh distance ¹⁷ in the isoelectronic complex $[Rh_2(S_2CNMe_2)_5]^+$ is 3.556 Å}.

It is also worth noting the difference in the rates of the isomerisation reactions (9) and (10) where the Ru-Ru

$$\beta - [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^- \longrightarrow \alpha - [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^-$$
(9)

$$\alpha - [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^+ \longrightarrow \beta - [\operatorname{Ru}_2(\operatorname{S}_2\operatorname{CNMe}_2)_5]^+$$
(10)

bonded cation isomerises rather slowly at 60 °C whilst the anionic species isomerises quickly, even at room temperature. The rate of conversion of β -[Ru₂(S₂CNMe₂)₅]⁻ into α -[Ru₂(S₂CNMe₂)₅]⁻ was estimated from the cyclic voltammograms of the [Ru₂(S₂CNMe₂)₅]-[Ru₂(S₂-CNMe₂)₅]⁻ couple [Figure 2(c)] using the working curve of Nicholson and Shain ²⁶ for the follow-up reaction to the electron-transfer step. For this purpose the $\beta^- \rightarrow \alpha^$ conversion was considered to be irreversible. Approximate k values of 0.04, 0.06, 0.16, 0.38, 0.50, and 1.48 s⁻¹, obtained at 5, 15, 25, 35, 45, and 55 °C, were used in a plot of log k against 1/T to obtain a projected value at 60 °C of $k = 2 \pm 1$ s⁻¹ for the isomerisation. This approach helps minimise the errors caused by non-reproducible surface effects at the platinum electrode.

This marked effect in isomerisation rates of at least a factor of 10⁴ probably reflects the influence of the Ru-Ru bond on the energetics of rotation at the ruthenium centres, although the requirement of the breaking of a Ru-S bond to allow these isomerisations may also be more difficult with the cationic species. The difficulty of breaking the Ru-Ru bond in [Ru₂(S₂CNMe₂)₅]⁺ is shown when a mixture of the two isomers was heated under reflux in MeOH for 5 h with [S₂CNMe₂]⁻ in an attempt to cleave the dimer into two molecules of [Ru-(S₂CNMe₂)₃]. Thin-layer chromatography showed that very little [Ru(S₂CNMe₂)₃] was formed. This behaviour contrasts with that observed ¹⁶ with α -[Co₂(S₂CNR₂)₅]⁺ which is readily cleaved with anionic and neutral chelates (L) to form $[Co(S_2CNR_2)_3]$, $[Co(S_2CNR_2)_2L]$, and [Co- $(S_2CNR_2)_2L$ ⁺. These observations help substantiate the proposed 17 intramolecular mechanism for interconversion of isomers of the α and β types.

The new neutral dimer, $[Ru_2(S_2CNMe_2)_5]$, was isolated by two routes, both of which utilise the lower solubility of the neutral complex in acetone and methanol compared with the cationic precursor $[Ru_2(S_2CNMe_2)_5]^+$ as $[BF_4]^$ and Cl⁻ salts, respectively. Tetrahydridoborate reduction of the cation readily afforded a pure sample of the complex, although the neutral species was also isolated from electrolysis studies. The spectral properties of the new complex are included in Tables 2 and 4. The problem of formulating $[Ru_2(S_2CNMe_2)_5]$ in terms of two delocalised $Ru^{2.5+}$ or as a mixed $Ru^{3+}Ru^{2+}$ species has not been examined and is worthy of further study.

We thank Drs. A. H. White and C. Raston for providing many of the $[Ru(S_2CNR_2)_3]$ complexes used in the electrochemical studies, and Dr. D. Taylor for the crystallographic studies.

[5/2552 Received, 31st December, 1975]

²⁶ R. S. Nicholson and I. Shain, Analyt. Chem., 1964, 36, 706.